o B o

WIP: A Flexible Intermediate Language
for High-Level Synthesis

Anonymous Author(s)

Abstract

High-level synthesis (HLS) compilers transform high-level,
untimed programs into synthesizable RTL designs and have
the potential to drastically improve the productivity of accel-
erator design. However, research on HLS is hindered by exist-
ing tools’ monolithic integration: existing toolchains tightly
couple a specific input language with large, mandatory trans-
formation passes and target-specific output. We posit that
the fundamental problem is the lack of a self-contained inter-
mediate language (IL) that can capture both computational
semantics and hardware-level resource constraints.

Futil is an in-progress IL that can represent programs at
every stage in the chain of transformations from high-level
specification to the low-level implementation. The key idea
in Futil is a dual representation that captures both the struc-
ture, consisting of physical hardware resources and their
interconnection graph, and the control, which orchestrates
the structure over time to run a computation. Futil includes
a framework for implementing modular compiler passes
that transform higher-level control constructs into hardware
structure. Through composition of passes, Futil can offer flex-
ible compilation strategies suited to different input languages
and different reconfigurable hardware targets. Futil aims to
provide a robust and expressive foundation for experiment-
ing with HLS in the same way LLVM does for traditional
software compilers.

1 Introduction

High-level synthesis (HLS) compilers transform high-level,
untimed programs into synthesizable RTL designs. Wide-
spread adoption and research into HLS tools is a crucial
ingredient in the development of reconfigurable accelera-
tors to counteract the stagnation resulting from the wane of
Moore’s Law. However, research in HLS is hindered by the
monolithic integration of the compilers and tooling. Stan-
dard HLS tools are intertwined with the semantics of one or
two input languages like C++. A given HLS compiler typi-
cally targets only a single vendor’s FPGA or a single ASIC
toolflow. Finally, monolithic HLS toolchains prevent the de-
velopment of modular, reusable passes that manipulate or
optimize accelerator programs.

A key innovation that enables the shared infrastructure
of software tools today is the development of intermediate
languages (ILs) such as as LLVM [13] that can concisely

LCTES’20, June 15-20, 2020, London, United Kingdom
2018.

LLVM Halide Dahlia PyTorch

Futil

|

Common
Optimizations

¢—‘—¢

Static Dynamic
Scheduling Scheduling

\—H

Resource

Lo
(o) (o) (o)

Figure 1. Futil (highlighted) separates microarchitectural
decisions from source and target languages.

represent the constraints of target ISAs while also being a
flexible frontend for many different languages. We posit that
an IL for HLS compilation can enable similar reuse of tooling
and infrastructure across many languages and backends.

We see the fundamental responsibilities of an HLS com-
piler as threefold: parallelization, resource binding, and cy-
cle insertion. A traditional, monolithic HLS compiler inter-
twines all three responsibilities in a composite heuristic
framework. Parallelization transforms a sequential program
into a parallel schedule. HLS tools typically rely on standard
conservative automatic parallelization techniques. During
resource binding, the compiler maps logical instructions, such
as add32, onto physical resources on the target fabric, such
as adders. Finally, cycle insertion generates a finite state ma-
chine (FSM) that realizes the logical parallel schedule as phys-
ical, cycle-by-cycle timing. The challenging part of building
a modular and extensible HLS compiler is cleanly separat-
ing these concerns without adversely affecting performance
and area. For example, if the parallelization step attempts to
maximize the throughput, the resource binding phase has to
work harder to minimize resource conflicts.

Our main goal in the design of an IL for HLS is to en-
able modular passes to do parallelization, resource binding,
and cycle insertion by transforming programs in the IL. We
propose that such an IL should meet these criteria:

Self contained. An IL is a programming language that
should capture the meaning of a program at any stage of
compilation. Therefore, it should be possible to rigorously
define a program’s semantics without reference to the origi-
nal input code, details of the passes, or ad hoc compiler data

104

109

111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165

LCTES’20, June 15-20, 2020, London, United Kingdom

structures. A self-contained IL allows for modular compiler
design because the responsibility for a given pass can be com-
pletely defined in terms of its input and output programs.

Hardware aware. An IL for HLS must represent the phys-
ical constraints on timing and resources. This way, modular
passes can optimize the timing behavior and resource usage
of an accelerator design by transforming the IL program.
When an IL is both self contained and hardware aware, the
semantics of the IL can answer questions about the perfor-
mance and area of a given program.

Expressive. An IL for HLS must be expressive enough to
capture both the computational semantics of different high-
level frontend languages as well as the resource and timing
constraints of different targets, including commercial FPGAs
and various flavors of CGRAs. An expressive IL can enable
innovation in new high-level languages for accelerator de-
sign that shed the legacy baggage of C [16, 6, 11], and it
can facilitate novel reconfigurable hardware designs [17] by
providing a starting point for their compiler toolchains.

Futil is an intermediate language for building extensible HLS
compilers. Futil explicitly represents resource and timing
decisions using a split representation that includes both static
hardware structure and dynamic logical control. In addition
to allowing common software optimizations used by HLS
compilers, Futil toolchains can easily swap out hardware-
focused cycle insertion and resource binding passes.

2 Related Work

Other HLS compilers also rely on intermediate representa-
tions. The key difference in Futil is the explicit representation
of hardware resources as a complement to imperative control
flow. This section contrasts Futil with traditional software
IRs and more recent languages that specifically target recon-
figurable accelerators.

LLVM and software IRs. xPilot [4] and LegUp [2] are
commercially successful HLS toolchains built on LLVM [13].
Using LLVM allowed these tools to reuse complex software
optimizations and generate timed RTL by writing monolithic
compiler passes to perform cycle insertion and resource bind-
ing. Some passes work by adding metadata to the LLVM
program to encode hardware-level concerns like timing and
resource binding. These metadata formats are undocumented
internal data structures, however, and do not allow modu-
lar passes to experiment with new mapping strategies. The
goal of Futil is to expose these concerns in a language with
self-contained semantics, making it easy to inspect and ma-
nipulate the compiler’s hardware-level decisions.

puIR. IR [19] is a recent proposal for a C-to-RTL com-
piler that relies on a parallel extension to LLVM as an in-
put. The pIR compiler represents programs as a graph of

Anon.

asynchronously communicating tasks which let it repre-
sent forms of parallelism not manifest in traditional IRs like
LLVM. Unlike Futil, it does not attempt to represent physi-
cal resources. Frontends therefore cannot control resource
mappings, and passes cannot manipulate the allocation of
hardware resources to computations.

HPVM. The Heterogeneous Parallel Virtual Machine [12]
is a new intermediate representation that targets a wide va-
riety of novel hardware targets, from multicores to GPUs
and FPGAs. The key idea is to represent many forms of
parallelism in the IR to enable efficient code generation on
platforms that exploit parallelism in different ways. We see
Futil as a potential backend for HPVM when targeting re-
configurable hardware specifically. Unlike HPVM, Futil adds
a mechanism for reasoning about the allocation of physical
resources to exploit area—parallelism trade-offs.

IRs for HDLs. Modern hardware description languages
such as Chisel [1, 9], PyMTL [15], and Magma [7, 5] include
IRs for building pass-based hardware optimization frame-
works, and LLHD [18] is a standalone IR designed to capture
the semantics of traditional HDLs. These IRs are lower level
than Futil and target optimization at the bit and wire level.
We view these as target backends for Futil.

3 The Futil Language

This section introduces Futil, an IL that enables the design
of extensible and modular HLS compilers. Futil programs
are composed of components. Every component consists of a
structure part and a control part. Structure instantiates sub-
components and the data-flow connections between them,
and control describes how the structure behaves over time.

The separation of structure and control is a key idea in
Futil’s design. Structure lets Futil represent hardware-level
concerns such as resource sharing and control enables rea-
soning about a program’s computational semantics. Passes
in a Futil-based compiler shift parts of the program from
software-like control to hardware-like structure, eventually
producing a mostly-structural program that closely corre-
sponds to a hardware implementation.

We next describe the Futil language in more detail. Sec-
tions 3.1 and 3.2 then describe how lowering and optimiza-
tion passes work in a compiler based on Futil.

Components. A Futil program defines a component with
the define/component syntax form. A component consists
of a name, a list of named input ports and their bitwidths, a
list of output ports, a structure list, and a control expression.
The syntax looks like this:

(define/component component_name

([inputA 32] [inputB 1])

([output 32])

(/* structure x/)
/* control x/)

166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220

221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265

267
268
269
270
271
272
273
274
275

WIP: A Flexible Intermediate Language
for High-Level Synthesis

Futil backends provide implementations for primitive com-
ponents that other components can instantiate. Primitive
components include adders, multiplexers, registers, mem-
ories, etc. Backends also supply area, energy, and timing
information for the primitives that can be used in passes.

Structure sub-language. Futil components describe their
static hardware structure as a graph where nodes are subcom-
ponents and edges are wired connections. Subcomponents
are declared with new. The -> statement connects ports be-
tween component instances. The syntax (@ comp portA)
references the port named portA on the component named
comp. This example shows a structure with two subcompo-
nents and two connections:

[new B (comp/memory 8)] // component instantiations
[new dot my/register]

[-> (@ B out) (@ dot in)] // port connections
[-> (@ dot out) (@ this out)]

The new statements can optionally provide parameters to
components to specify properties like bitwidths or memory
sizes. The keyword this in the last statement refers to the
component currently being defined.

Control sub-language. The control sub-language in Fu-
til orchestrates the behavior of the components instantiated
in the structure. It resembles an ordinary imperative pro-
gramming language augmented with parallelism.

The central statement that Futil control can execute is
enable, which activates one or more structural components,
running their respective computations:

(enable A reg@) // Execute A and allow writes to reg0

Futil provides two composition operators: par to execute
components in parallel, and seq to execute components in
sequence. A par or seq statement finishes executing when
all sub-components are done.

(seq (enable A) (enable B) (enable C))
(par (enable A) (enable B) (enable C))

if and while statements allow expressing more complex
control-flow.

(while (@ comp port)
(seq (enable A) ...))

(if (@ comp port)

(seq (enable A) ...))
The composition primitives (seq and par) in Futil give fron-
tend compilers the ability to concisely express a rich class
of program schedules, while the control-flow primitives (i f
and whiile) allow programmers to express high-level control
in a similar fashion to high-level programming languages,
making it easier to compile frontend languages into Futil.
These high-level control statements are compiled away for
Futil toolchain.

3.1 Compilation

Futil aims to enable a compiler to translate high-level pro-
grams to low-level hardware implementations. High-level

LCTES 20, June 15-20, 2020, London, United Kingdom

programs, early in the compiler pipeline, are control heavy
while lower-level programs consist of more structure and
less control. A purely structural program has Verilog-like
semantics and admits straightforward translation to RTL. In
this section, we demonstrate how Futil represents the tradi-
tional scheduling and binding phases of an HLS compiler.

Scheduling. In an HLS compiler, the scheduling phase
assigns each logical operation of a program to a specific
clock cycle. The control language of each component in Futil
represents a coarse-grained schedule; it describes a happens-
before ordering of operations rather than a strict assignment
of operations to clock cycles. Scheduling in Futil is the task
of generating cycle-level timing for a component that im-
plements its control description. Futil represents cycle-level
timing with a global schedule with the following form:

(seq (enable A B) (enable C D) ...)

In a global schedule, operations in each enable correspond
to actions for that clock cycle. Futil assigns each enable
statement a precise latency by recursively computing the
timing information of each sub-component.

While scheduling in traditional HLS compilers happens in
a monolithic phase, Futil allows for the process of generating
the global schedule to be broken up into several modular
passes. For example, one pass could be responsible for re-
placing wh1ile loops with equivalent structure and another
pass could flatten nested seq / par constructs. This makes it
easier to experiment with small changes to the scheduler.

Binding. The binding phase of an HLS compiler assigns
physical resources to each logical resource, possibly reusing
physical resources multiple times. Replacing this phase is
challenging because it typically uses target-specific heuris-
tics. The compiler implicitly maintains timing information
and target specification to enable binding.

Since Futil directly represents resources and timing in-
formation, binding is just another optimization pass. It can
be implemented using small, modular passes that remove
duplicate components, insert multiplexing logic, and mod-
ify the control. For example, consider a program that uses
multipliers A and B at two different times:

([new A (comp/mult 32)] // structure
[new B (comp/mult 32)] ...)

(seq (enable A) // control
(enable B))

Since the multipliers execute in sequence, a compiler pass
may decide to reuse the multiplier A and reduce the area of
the final design by multiplexing the inputs and outputs of
A:
([new A (comp/mult 32)] // structure

[new M (comp/mux 32)] ...) // define new multiplexer

(seq (enable A M) // control
(enable A M))

276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330

331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385

LCTES’20, June 15-20, 2020, London, United Kingdom

Because resource binding is decoupled from the rest of the
compiler, experimenting with different binding strategies for
different targets is straightforward.

3.2 Optimization Passes

Through its explicit representation, Futil can represent both
traditional HLS optimizations such as loop unrolling as well
as timing and resource-directed optimizations.

Loop unrolling. Area—performance trade-offs such as
loop unrolling are common in HLS programming. HLS loop
unrolling (distinct from software loop unrolling) duplicates
hardware to execute independent loop iterations in paral-
lel, increasing throughput. Traditional HLS tools represent
unrolling using #pragma annotations on C loops.

Futil can easily represent loop unrolling by explicitly mak-
ing copies of the loop structure and parallelizing the loop
control. Consider this Futil program:

([new A (comp/memory 8)] // structure

[new m® (comp/mult 32)]
[new i0@ (comp/iter 0 1 8)])
(while (@ i0 stop)

(enable A m0@))

// control

Unrolling the loop once results in code like this:

([new A® (comp/memory 4)] [new Al (comp/memory 4)]
[new m@ (comp/mult 32)] [new ml (comp/mult 32)]
[new i0 (comp/iter @ 2 8)] [new il (comp/iter 1 2 9)])

(par (while (@ i0 stop) (enable A® m@))

(while (@ il stop) (enable Al ml)))

Operator chaining. Operator chaining is an optimization
that improves the overall latency of a design by scheduling
sequences of operations into a single clock cycle if the latency
of the sequence of operations is shorter than the estimated
cycle length. In Futil, this can be expressed as a control
transformation. Programs of the following form:

(seq (enable A) (enable B) (enable C) ...)

could be translated into:

(seq (enable A B) (enable C) ...)

Software-style optimizations. Futil enables classical com-
piler optimizations to be performed on the control language.
Performing these optimizations in Futil, rather than in a soft-
ware IR, allows these optimizations to compose cleanly with
hardware optimizations. For example, classic loop-invariant
code motion (LICM) lifts statements out of loop when their
behavior is the same on every iteration, as in this Futil loop:
(while (@ i0 out)

(seq (enable A B mult c) // c = A * B

(enable x c))) /] X = x *x cC

Here, c is recomputed every loop iteration but its value never
changes. A Futil LICM pass results in code like this:

(seq (enable A B mult c) // c =A x B

(while (@ io out)

Anon.

(seq (enable x c) /* x = x x ¢ x/)))

4 Future Directions

Futil aims to make the development of HLS compilers flexible
and modular. Rapid iteration of compiler technologies is a
critical ingredient in widespread adoption of reconfigurable
accelerators. We enumerate opportunities to build on Futil
to enable future research.

Latency-insensitive design. Dynamic scheduling [10] is
a scheduling strategy that leverages latency-insensitive in-
terfaces to improve the execution time of designs that ex-
tensively use data-dependent control. Currently, Futil can
represent static schedules but not dynamic ones. We plan to
augment Futil with variants of enable that can wait asyn-
chronously for a component to signal its completion.

Verified compilation. The last decade has produced break-
throughs in formal verification of software compilers. Futil’s
pass-based design will enable easier verification of HLS com-
pilers. CompCert [14] and similar verified compilers use
refinement to build up a proof of correctness for the com-
piler from modular proofs that individual passes preserve the
semantics of the program. A self-contained IL semantics is a
critical first step toward formulating a correctness theorem
for individual compiler passes. Because Futil modularizes
complex passes such as scheduling and binding, it will allow
verification efforts to scale.

Hardware backends. Futil currently generates accelera-
tors for commercial FPGAs. We want to extend Futil to target
other hardware backends such as emerging coarse-grained
reconfigurable arrays (CGRAs) and real silicon via ASIC
toolchains. The challenge in targeting CGRAs is that, unlike
FPGAs, their design and capabilities can vary wildly: some
use static scheduling while some are purely dynamically
scheduled [8]; each CGRA bakes different logic into its pro-
cessing elements [3]; and each CGRA can distribute on-chip
memories differently [17]. Meanwhile, ASIC design offers to-
tal flexibility in the instantiation of structural resources. We
expect Futil’s modular pass framework to enable us to add
ASIC- and CGRA-specific optimization and binding passes,
making it easier to develop toolchains for these technologies.

New design languages. Traditional HLS relies on C and
C-like input languages, but repurposing a legacy software
language introduces a semantic gap between the program-
mer’s view and the compiler’s output. We see an opportunity
to design new HLS languages that more faithfully reflect the
constraints of accelerator implementation while still offer-
ing high-level algorithmic semantics. Futil’s representation
of structural resources and hardware timing will let novel
language frontends exert more control over the hardware
they generate without resorting to generating Verilog.

386
387
388
389
390
391
392
393

399

416

426

432

441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475

477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495

WIP: A Flexible Intermediate Language
for High-Level Synthesis

References

(1]

—
[o)
[t

(10]

(11]

(12]

[13

[t}

(14]

(15]

(16]

(17]

Jonathan Bachrach, Huy Vo, Brian Richards, Yunsup Lee, Andrew
Waterman, Rimas Avizienis, John Wawrzynek, and Krste Asanovic.
2012. Chisel: constructing hardware in a Scala embedded language. In
Design Automation Conference (DAC).

Andrew Canis, Jongsok Choi, Mark Aldham, Victor Zhang, Ahmed
Kammoona, Jason H Anderson, Stephen Brown, and Tomasz Cza-
jkowski. 2011. LegUp: high-level synthesis for FPGA-based pro-
cessor/accelerator systems. In International Symposium on Field-
Programmable Gate Arrays (FPGA).

S. Alexander Chin, Noriaki Sakamoto, Allan Rui, Jim Zhao, Jin Hee
Kim, Yuko Hara-Azumi, and Jason Helge Anderson. 2017. CGRA-ME: A
unified framework for CGRA modelling and exploration. International
Conference on Application-specific Systems, Architectures and Processors
(ASAP) (2017).

J. Cong, Y. Fan, G. Han, W. Jiang, and Z. Zhang. 2006. Platform-
Based Behavior-Level and System-Level Synthesis. In International
SoC Conference.

Ross Daly, Lenny Truong, and Pat Hanrahan. 2018. Invoking and
Linking Generators from Multiple Hardware Languages using CorelR.
In Workshop on Open-Source EDA Technology (WOSET).

David Durst, Matthew Feldman, Dillon Huff, David Akeley, Ross Daly,
Gilbert Louis Bernstein, Marco Patrignani, Kayvon Fatahalian, and Pat
Hanrahan. 2020. Type-Directed Scheduling of Streaming Accelerators.
In ACM SIGPLAN Conference on Programming Language Design and
Implementation (PLDI).

Pat Hanrahan. [n.d.]. Magma. https://github.com/phanrahan/magma.

Yuanjie Huang, Paolo Ienne, Olivier Temam, Yunji Chen, and Chengy-
ong Wu. 2013. Elastic CGRAs. In International Symposium on Field-
Programmable Gate Arrays (FPGA).

Adam M. Izraelevitz, Jack Koenig, Patrick Li, Richard Lin, Angie Wang,
Albert Magyar, Donggyu Kim, Colin Schmidt, Chick Markley, Jim
Lawson, and Jonathan Bachrach. 2017. Reusability is FIRRTL ground:
Hardware construction languages, compiler frameworks, and trans-
formations. In International Conference on Computer-Aided Design
(ICCAD).

Lana Josipoviundefined, Radhika Ghosal, and Paolo Ienne. 2018. Dy-
namically Scheduled High-Level Synthesis. In International Symposium
on Field-Programmable Gate Arrays (FPGA).

David Koeplinger, Matthew Feldman, Raghu Prabhakar, Yaqi Zhang,
Stefan Hadjis, Ruben Fiszel, Tian Zhao, Luigi Nardi, Ardavan Pedram,
Christos Kozyrakis, and Kunle Olukotun. 2018. Spatial: a language and
compiler for application accelerators. In ACM SIGPLAN Conference on
Programming Language Design and Implementation (PLDI).

Maria Kotsifakou, Prakalp Srivastava, Matthew D. Sinclair, Rakesh Ko-
muravelli, Vikram Adve, and Sarita Adve. 2018. HPVM: Heterogeneous
Parallel Virtual Machine. In PPoPP.

Chris Lattner and Vikram Adve. 2004. LLVM: A Compilation Frame-
work for Lifelong Program Analysis & Transformation. In International
Symposium on Code Generation and Optimization (CGO).

Xavier Leroy. 2009. Formal Verification of a Realistic Compiler. Com-
munications of the ACM (CACM) (July 2009), 107-115.

Derek Lockhart, Gary Zibrat, and Christopher Batten. 2014. PyMTL:
A Unified Framework for Vertically Integrated Computer Architecture
Research. In IEEE/ACM International Symposium on Microarchitecture
(MICRO).

Rachit Nigam, Sachille Atapattu, Samuel Thomas, Zhijing Li, Theodore
Bauer, Yuwei Ye, Apurva Koti, Adrian Sampson, and Zhiru Zhang.
2020. Predictable Accelerator Design with Time-Sensitive Affine Types.
In ACM SIGPLAN Conference on Programming Language Design and
Implementation (PLDI).

Raghu Prabhakar, Yaqi Zhang, David Koeplinger, Matthew Feldman,
Tian Zhao, Stefan Hadjis, Ardavan Pedram, Christoforos E. Kozyrakis,
and Kunle Olukotun. 2017. Plasticine: A reconfigurable architecture for

(18]

[19]

LCTES 20, June 15-20, 2020, London, United Kingdom

parallel patterns. In International Symposium on Computer Architecture
(ISCA).

Fabian Schuiki, Andreas Kurth, Tobias Grosser, and Luca Benini. 2020.
LLHD: A Multi-Level Intermediate Representation for Hardware De-
scription Languages. In ACM SIGPLAN Conference on Programming
Language Design and Implementation (PLDI).

Amirali Sharifian, Reza Hojabr, Navid Rahimi, Sihao Liu, Apala Guha,
Tony Nowatzki, and Arrvindh Shriraman. 2019. pIR: An Intermediate
Representation for Transforming and Optimizing the Microarchitec-
ture of Application Accelerators. In IEEE/ACM International Sympo-
sium on Microarchitecture (MICRO).

496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550

https://github.com/phanrahan/magma

	Abstract
	1 Introduction
	2 Related Work
	3 The Futil Language
	3.1 Compilation
	3.2 Optimization Passes

	4 Future Directions
	References

